
Improve Quality 
 

1. Test early and Test often with Automation 
 
To improve software quality, it is absolutely paramount to Test early and Test often. Early 
testing will ensure that any defects do not snowball into larger, more complicated issues. 
The bigger the defect, the more expensive it becomes to iron out any issues. 
The earlier you get your testers involved, the better. It is recommended to involve testers 
early in the software design process to ensure that they remain on top of any problems or 
bugs as they crop up, and before the issues grow exponentially which generally makes it 
harder to debug. 
 
Testing often requires a focus on early adoption of the right automated testing discipline. 
Start by automating non UI tests initially then slowly increasing coverage to UI based tests 
when the product stabilises. If your application utilises Webservices/APIs then automate 
these tests to ensure all your business rules and logic are tested. 
This is an important time to work with your software developers to ensure automated testing 
is also introduced to your development teams, increasing testing coverage, accuracy and 
improving quality of the overall product. 
 
2. Implement quality controls from the beginning 
 
Testers can monitor quality controls and create awareness in partnership with developers to 
ensure standards are continually being met. Quality control starts from the beginning, which 
is an ongoing process throughout the delivery. 
 
A good relationship between testers and developers can help the project software strategy 
develop effectively. A systematic methodology in quality control can ensure that coding 
errors and bugs are dealt with effectively, following a structured process. 
 
3. Echo the importance of quality assurance 
 
We have identified how important testing is at the beginning of software development; 
however, the testing does not stop there. Quality assurance should be ever-present 
throughout the software development process. 
Quality Assurance is a governance provided by the project team that instils confidence in 



the overall software quality. Assurance testing oversees and validates the processes used 
in order to deliver outcomes have been tracked and are functioning. Testing should be 
repeated as each development element is applied. Think of it as layering a cake. After every 
layer is added, the cake should be tasted and tested again. 
 
4. Encourage innovations 
 
It is important that testing structures and quality measures are in place, however, there 
should always be room for innovation. A great way to allow for innovation is to automate 
testing where possible to minimise time spent on controls. 
 
Innovations are so important because they can lead to improvements in software quality 
that have the capability to transform how projects are delivered. Research and development 
(R&D) should be encouraged. Empower teams to explore, experiment and investigate 
continuously. Also, ensure that advancements in innovation are duly rewarded. They have 
the capacity to transcend your software quality and deliver projects with a competitive 
advantage over the competition. 
 
5. Communication is key 
 
For any relationship to be successful, whether it’s personal or business, communication is 
key. To improve software quality it is important that all parties to the project have full 
information through fluid communication channels. 
 
Fluid communication can take many forms. It can be as simple as having clear, consistent 
KPIs that show how software quality is measured at every step of the development process. 
It is important that all team members, regardless of seniority, have access to KPIs to keep 
the entire team on the same page. Another important aspect of fluid communication is that 
all parties have the opportunity to provide feedback to the team to ensure that all 
expectations are being met. 
 
It is also important to keep all stakeholders in the loop and not isolate team members from 
the vendors or end user of the software. Isolation can cause rifts and can often mean that 
the project is delayed or may not deliver on the goals expected by senior management. 
 
6. Plan for a changeable environment 
 
Software contains so many variables and is in continuous evolution. It relies on several 



different external factors such as web browsers, hardware, libraries, and operating systems. 
These constant external factors mean that software development must be consistently 
monitored using checks and balances to certify that it remains in stride with its immediate 
environment. It is important to acknowledge that software is interdependent on these 
external factors. Accepting this interdependence means that you can plan ahead. It allows 
you to have the software quality tested, at each step of the process, against external 
variables, to see how it holds up. The end result is that you will prevent software dissonance 
and maintain software quality. 
 
7. Take the attitude of creating products not projects 
 
This step is a reflection of the attitude of your team. Creating a project indicates to your 
team that you are producing a finite outcome. However, we are well aware that software is 
changeable. If you produce a finite outcome, before long the software quality will not stand 
up against its environment. 
 
Instead, if your team takes the mindset that they are creating a product it is more likely that 
they will deliver software quality that is adaptable to change and can stand the test of time. 
Focus on delivering continuous small progressions rather than one final end project and 
your team will deliver an increase in quality. 
 
8. Have a risk register 
 
A risk register is a fantastic management tool to manage risks. A risk register is more 
synonymous with financial auditing, however it is still a vital element in software 
Development. 
 
A risk register will provide everybody aligned on a software project a list of clearly identified 
risks and then assess them in regards to the importance of delivering the project. A risk 
register works well for software quality because its creation actively leads to risk mitigation. 
 
A software development risk register must: 
● describe the risk 
● recognise when the risk was identified 
● acknowledge the chance of the risk occurring and its mitigation 
● understand the severity of the impact of the risk 
● identify who assesses and actions the risk 
● relays the response if the risk materialises 



● gives the status of each risk 
● measures the negative impact of each risk 
● prioritises the risks ranked on probability and gravity 
 
9. Producing software quality requires long-term thinking and strategy 
 
Long-term thinking produces software quality because decisions are made to satisfy lasting 
issues. Here are the advantages of long-term thinking for producing software quality: 
 
● Doing it right first means you don’t have to spend time doing it over. 
● Placing as much importance on architecture and design as coding ensures the 
veracity of your project. 
● Creating coding standards with long-term vision eliminates unnecessary mistakes. 
● Effective peer review ensures errors are minimised even though it may seem 
time-consuming at that particular moment. 
● Testing often allows you to plan further ahead with certainty that errors and bugs 
have been fixed. 
 
Project leaders need to ensure that short-term gains and immediate gratification do not 
compromise long-term strategy. Effective planning will make sure all stakeholders prioritise 
software quality. 
 
10. Outline your deliverables 
 
From the outset of your project it is imperative that your team outline what they are going to 
deliver. A clear and concise plan of what the project will deliver helps ensure there is an 
emphasis on quality from the outset. 
 
It also ensures that budgets, resources, and time are aligned correctly to deliver quality. 
Without clear deliverables it is likely shortcuts will be taken to meet budgets and deadlines. 
Ultimately, this will compromise the quality of the software delivered at the end of the 
Project. 
 
11. Review, revise, and remember 
Producing software quality is not a coincidence. This is why you must always do the 
following three things: 
● Review – Testing often is a pillar of ensuring software quality. It ensures that 
standards are continuously met and bugs, errors and distractions can be fixed before 



they spiral out of control. 
● Revise – Study what has worked throughout the software process. Utilise what is 
working and see if innovation can transcend your software quality even further. 
● Remember – When you deliver quality remember what worked well and did not work 
well. Keep an updated record of both the positives and negatives of any given 
project and turn to it frequently when you start the next project from scratch. 
 


