
Increase Confidence 
 

Confidence – “the feeling or belief that one can rely on someone or something; firm 
trust.” https://en.oxforddictionaries.com/definition/us/confidence 
 
Confidence dictates how much testing we feel we need to execute before we can sign off 
on anything we test. Our current confidence in our development team directly impacts 
how much test time we will take in order to feel our software is ready for sign off. The 
historical quality coming out of the development team dictates this level of confidence. 
 
High Confidence – Just the right amount of testing is executed ensuring software can 
be signed off. (Note: This does not apply to mission critical software systems.) 
 
Low Confidence – Based on historically bad code quality testers may over test even 
when code quality is good. 
 
I believe this confidence level is very impactful to the speed in which we develop 
software. We might hear “QA is a bottleneck” but this is potentially due to historically 
low quality code causing testers to over test even when good quality code is being 
Verified. 
 
To illustrate this point further see the approach below I came up with to test and 
ultimately verify bug fixes. 
 
Example: A Mobile App Which Requires Users to Login 
Imagine we have a mobile app which requires users to login. The fictitious bug we will 
be verifying is the following: 
Title: Login Screen – App crashes after tapping login button. 
Preconditions: App is freshly installed. 
 
Steps to Reproduce: 
1. Launch the app and then proceed to the login screen. 
2. Enter a valid existing email and password. 
3. Tap the “Login” button. 
Result: App crashes. 
 
Before Verification Begins 
Once a bug is marked fixed it’s important we gain more understanding about it before 

https://en.oxforddictionaries.com/definition/us/confidence


starting to verify its fix. To do this we ask the following questions of the developer who 
implemented the fix: 
● What was the underlying issue? 
● What caused this issue? 
● How was the issue fixed? 
● What other areas of the software could be impacted with this change? 
● What file was changed? 
● How confident is the developer in the fix? Do they seem certain? Even this can 
somewhat impact how we test. 
 
* Special Note: Remember we need to gain context from a developer but as a tester 
you’re not taking direction on exactly what to verify. This is your role as a tester. Of 
course if a developer suggests testing something in a certain way you can but it’s your 
role as an experienced tester to use your mind to test a fix. 
 
Now that we have gained a full understanding of how the bug was fixed let us start by 
verifying at the primary fault point (Exact steps listed in the original bug write up). 
Below are the high level verification/test ideas starting from very specific checks 
working outwards like layers of an onion. Notice as we execute more tests and move 
away from the primary fault point our confidence level in the fix is increasing. 
 
Test Pass 1 
● Exact Software State : Follow exact “Preconditions”. In this case “App is 
freshly installed”. 
● Exact Input : Following exact steps listed in bugs “Steps to Reproduce”. 
● Verify app no longer crashes. 
● We could stop here but we would not have full confidence that the bug is fully 
fixed and that we haven’t introduced new knock-on bugs. 
Moving another layer away from the fault: Our confidence in the fix is increasing 
 
Test Pass 2 
● Varied State : App is not freshly installed but user is logged out. 
● Exact Input : Following exact steps listed in bugs “Steps to Reproduce” 
● Verify app does not crash 
Moving another layer away from the fault: Our confidence in the fix is increasing 
 
Test Pass 3 
● Varying State – After logging out/restarting app and clearing app data. 
● Varying Input – Missing credentials/Invalid credentials 



● Verify no unexpected behavior 
Moving another layer away from the fault: Our confidence in the fix is increasing 
 
Test Pass 4 
Test features/functions around login such as: 
● Forgot Password 
● Sign Up 
Moving another layer away from the fault: Our confidence in the fix is increasing 
 
Test Pass 5 
Moving one final layer away from this fix we enter a phase of testing which includes 
more outside the box type tests such as: (Note: I love this type of testing as it’s very 
creative) 
● Interruption testing – Placing app into the background directly after 
tapping the login button. 
● Network fluctuations – Altering connection while login is taking place. 
● Timing issues – Running around interacting with UI elements at an 
unnatural speed. Example – Rapidly tapping the login button then back 
button then login button. 
 
At this point our historic confidence plays a role in whether we continue to test or we 
feel the bug is fixed. If QA’s confidence is low we could end up spending too much time 
testing in this final test pass with little to show for our efforts. 
 
How is Confidence Lowered? 
● Initial code quality signed off by development is low. As testers when we begin 
testing a fix which has been signed off as ready for testing, we will often gauge 
its quality based on how quickly we discover a bug which will need fixing. 
● Repeated low quality deliveries out of development can make testers correctly 
over test because it’s necessary. If bugs are found routinely very quickly in 
software we test naturally we are skittish in signing off future high quality 
Work. 
 
This can lead to over testing even when code quality is delivered in a high quality state. 
This over testing won’t provide anything of value. Don’t get me wrong you will find bugs 
but they might end up being more nice to know about then must fix issues. All software 
releases have bugs. It’s our job to identify high value defects which threaten the quality 
of our solutions. 
 



How Can We Boost Our Confidence? 
 
I believe we can’t perform “just-right” testing unless our confidence in our development 
teams is reasonably high. We need to make sure baseline quality is established before 
any “just-right” manual testing can take place. How do we do this? 
 
1. Test automation is a perfect mechanism to establish a quality baseline. 
“Checking” to ensure all basic functions are working as expected. 
2. Shift left into the trench and work with developers as they are implementing a 
feature so you can ensure initial quality out of development is higher. 
3. Measure your testing efforts to ensure you’re not over testing. Learn to know 
that sweet spot of just enough testing. 
4. Expose low quality areas – Retrospectives are ideal places to bring up quality 
issues with the larger team. Let them know you don’t have confidence and 
need something to change to boost it back up. 
5. Slow down – Oh no we can’t do that right? Yes we can and should slow down 
if our confidence is low. 


